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Summary 

This paper deals with the problem of diagnosing the technical condition of a planetary gearbox operating 
at variable load. The severity of the subject and related difficulties were discussed. Theoretical basis of 
analysis of non-stationary signals (order analysis) and its use in signal resampling was also presented.  

The paper tests the functionality of the planetary gearbox diagnostics method. The Multilayer Perceptron 
Network was used to identify and classify the damage. The network’s learning vectors were built on the basis 
of order analysis results and measurements of the planetary gearbox load. The functionality of two-layer and 
three-layer unidirectional artificial neural network was also analysed for potential use in diagnosing the 
technical condition of planetary gears. 
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DIAGNOZOWANIE STANU TECHNICZNEGO PRZEKŁADNI PLANETARNEJ Z 

WYKORZYSTANIEM SZTUCZNEJ SIECI NEURONOWEJ OPARTEJ NA METODACH ANALIZY 
SYGNAŁÓW NIESTACJONARNYCH 

 
Streszczenie  

Praca podejmuje tematykę diagnostyki stanu technicznego przekładni planetarnej pracującej przy 
zmiennych warunkach obciążenia. Omówiono w niej istotność podjętego tematu i trudności z nim związane. 
Przedstawiono również teoretyczne podstawy metody analizy sygnałów niestacjonarnych – analizy rzędów 
oraz jej zastosowanie przy użyciu metody przepróbkowania sygnału. 

W artykule zbadano funkcjonalność metody diagnozowania stanu technicznego przekładni planetarnej. 
Do identyfikacji oraz klasyfikacji uszkodzeń wykorzystano wielowarstwową sieć perceptronową. Wektory 
uczące sieci zbudowano na podstawie wyników analizy rzędów oraz pomiarze obciążenia przekładni. 
Przeprowadzono również analizę funkcjonalności sztucznej sieci neuronowej o architekturze dwuwarstwowej 
oraz trójwarstwowej jednokierunkowej, pod kątem wykorzystania do diagnozowania stanu technicznego 
przekładni planetarnej.  

  
Słowa kluczowe: diagnostyka wibroakustyczna, analiza rzędów, sieci neuronowe, przekładnia planetarna. 

 
1. INTRODUCTION 

 
Ensuring reliable operation of machinery and 

prevention of serious breakdowns means that 
procedures are needed which allow an early 
detection of faults and evaluation of technical 
condition of operating parts without the necessity to 
stop them. In addition, effective diagnostics systems 
can reduce the costs of routine maintenance and 
minimize the risk of an unplanned downtime. The 
main reason, accounting for 60% failures of rotating 
machines, is the gear train damage, of which 24% is 
caused by ineffective maintenance [1][2]. In 
addition, the gear train is a serial member of the 
reliability structure [3] where a failure of any 
member affects the reliability of the whole system. 

Consequently, there is a growing demand for 
monitoring the technical condition of large gear 
trains. The variety of requirements and operating 
conditions has resulted in a dynamic growth and 
development of newer and newer diagnostic 
methods. 

Due to their numerous advantages, planetary 
gearboxes find application is complex mechanical 
structures, such as mining machines, helicopters, 
wind turbines, ships. Large ratios and favourable 
distribution of forces in planetary gearboxes allow to 
transmit much higher torques while maintaining a 
more compact size than traditional gear trains. 
Planetary gearboxes are often used in very difficult 
conditions and at high loads.  
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A particularly challenging task is the monitoring 
of technical condition of planetary gearboxes based 
on the vibration signal at operating conditions which 
differ in time (varying load of the gearbox). The 
varying load results in changes of vibration signal 
amplitude and also of the rotational speed. Absence 
of connection between the diagnostic features and 
the value of drive system load may result in a failure 
to detect a damage or in an incorrect detection 
[4][5][6]. 

Artificial neural network based on vibroacoustic 
signals has been so far successfully implemented, 
showing good precision for failure detection and 
condition monitoring of spur gears [7], bearings 
[8][9] and other complex mechanical systems 
[10][11]. There are also several other researches 
regarding planetary gearbox diagnostics using 
various pattern recognition methods [12][13][14]. 

The paper presents the order analysis based on 
the resampling of the signal relative to the signal 
from the rotational speed senor (tachometer). This 
method allows diagnosing the technical conditions 
of machines operating at variable rotational speed. 
The analysis includes also the braking torque in 
order to account for the impact of the load on the 
values of diagnostic features. As for each type of 
machine, the load impact is different and sometimes 
difficult to define a priori, the neural networks as the 
artificial intelligence methods were used to detect 
and identify the damage.  

This paper is structured as follows. In Section 2 
the diagnostic experiment is described. Section 3 
contains the methods of signal analysis used in the 
preparation of training vectors. Review of learning 
vectors correctness is presented in section 4. The 
architectures of neural networks were discussed in 
Section 5. 
 
2. DIAGNOSTIC EXPERIMENT 

 
The tests were conducted at the Department of 

Mechanics and Vibroacoustics of AGH University 
of Science and Technology. The diagnosed object 
was a Rexnord Mercury 1-A planet gear with ratio 
of 3.75. The laboratory setup is shown in Figure 1. 

The acceleration was measured with the PCB 
356B08 tri-axial piezoelectric sensor installed on the 
gearbox housing. The directions of axes are 
presented in Figure 2 (X – horizontally, 
perpendicular to the input shaft, Y – parallel to the 
input shaft, Z – vertically). 

The input shaft speed was recorded with the 
Brüel&Kjær MM0360 tachometer; the signal from 
the tachometer allowed to synchronize the 
vibroacoustic signal with the rotational speed. The 
setup also allowed to control the powder brake by 
sending voltage signals proportional to the braking 
torque. The controller also allows to measure the 
current in the powder brake coil which is 
proportional to the braking torque. 

 

 
Fig. 1. Planetary gearbox test stand. 1- control 

cabinet with frequency converter and brake 
controller, 2- electric motor mounted on a movable 

base, 3- flexible coupling, 4-  Rexnord Mercury  
1-A  planet gear, 5- tooth coupling, 6- powder 

brake 
 

 
Fig. 2. Accelerometer mounted on the gearbox housing 

 
The laboratory measurements were performed in 

two series, for selected gearbox operation settings 
and all faults which could be simulated in the test 
setup: input shaft misalignment - misalignment angle 
1º) and flexible coupling unbalance (unbalance 
weight - 21g). The first series of measurements, or – 
to be more precise – the vectors built on the basis of 
its results, served as a learning sequence used in the 
process of teaching the neural networks how to 
recognize the operation conditions of the gearbox. 
The second series of measurements was used to 
build validation vectors which checked the correct 
operation of the artificial neural network. All 
gearbox settings tested during the experiment are 
given in Tables 1. Measurements were carried out 
for three operational states: good, misalignment and 
unbalance. The measured parameters were the same 
in both series of measurements. Additionally, the 
second series included measurements for two 
simultaneous faults, a so-called double damage 
(misalignment and unbalance). 
 

Tab. 1. Planetary gearbox operation settings in the first 
series of measurements 
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Parameters of voltage signal sent to the brake 

Speed 
[rpm] 

Signal type Frequency 
[Hz] 

Amplitude 
[Nm] 

Constant 
(DC) 

component 
[Nm] 

Constant - - 
Sinusoidal 1.1 15 500 
Sinusoidal 1.1 26.5 
Constant - - 

Sinusoidal 1.1 15 1000 
Sinusoidal 1.1 26.5 
Constant - - 

Sinusoidal 1.1 15 1500 
Sinusoidal 1.1 26.5 

27 

 
3. SELECTION OF DATA FOR LEARNING 
VECTORS 
 

In order to determine the gearbox diagnostic 
parameters, the vibration acceleration signals were 
subjected to order analysis. The order spectrum is 
obtained by means of resampling of the vibration 
time signal relative to the input shaft rotational 
speed. Figure 2 presents a diagram of the order 
analysis algorithm. First, the signal from tachometer 
is interpolated using a cascaded integrator-comb 
(CIC). Then, the filtered signal from tachometer is 
used to resample the vibration signal in order to 
determine the even angle signal. Such resampled 
signal can be subjected to the Fourier Fast 
Transform (FFT) which converts the frequency to 
order numbers corresponding to multiples of the 
input shaft rotational frequency [15]. 
 
 

 
Figure 2. Order analysis diagram 

 
 

Using the order analysis we can determine the 
amplitude and phase of a chosen order in time. 
Rotational frequency of the input shaft corresponds 
to order No. 1. Shaft misalignment is a source of 
vibration with double and triple rotational frequency 
[16][17], hence the input shaft misalignment will 
produce changes in the amplitude of order No. 2 and 
3. Unbalance will be observed in the amplitude of 
order No. 1. Figure 3 presents the amplitude of order 
No. 1 vs. time.  

 

 
Fig. 3. Amplitude of order No. 1 for good 

condition and for unbalance –X axis, speed 1500 
[rpm], load – sinusoidal signal with amplitude of 

15 [Nm], frequency 1.1 [Hz] 
 
In addition to the technical condition, the 

changes of the order spectrum amplitude are also 
affected by variations of the system load. 
Consequently, also taken into consideration was the 
value of brake coil current which is proportional to 
the load. The signal from the brake (Figure 4) and 
amplitudes of individual orders are similar (Figure 
3) 

 
Fig. 4. Load signal in the brake 

 
The vibration amplitude values and voltage 

values were averaged for 1-second intervals to 
reduce the amount of input data and obtain better 
separation between clusters corresponding to the 
gearbox operation conditions. The obtained averaged 
vectors, for speed 1500 rpm and sinusoidal load with 
frequency 1.1 Hz, are presented in figures 5, 6, 7 and 
8.  

 

 
Fig. 5. Relationship between order amplitude and 

the load on the brake. (order No. 1, axis X) 
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Fig. 6. Relationship between order amplitude and 

the load on the brake. (order No. 2, axis X) 
 
 

 
Fig. 7. Relationship between order amplitude and the load 

on the brake. (order No. 1, axis Y) 
 
 

 
Fig. 8. Relationship between order amplitude and 

the load on the brake. (order No. 2, axis Y) 
 
 
The learning vectors were built using the data 

from the vibration acceleration signal on axes X and 
Y, focusing on orders 1 and 2, and the load torque 
values. The final form of learning vectors is shown 
in table 2. For the purposes of article were built eight 
training vectors for each combination of motor speed 
and load type, where each of them corresponds to 
one second measurement. As a result, were built 72 
learning vectors for each damage. 

 
 
 
 
 
 

Tab. 2. Learning vectors consisting of 5 elements for each 
time instant 

- Learning 
vector 1 

Learning 
vector 2 

Learning 
vector 3 

Learning 
vector n 

Load on 
brake [Nm] 26.65 26.59 26.65 … 

Amplitude 
of order 1 – 

X axis 
[m/s2] 

0.129 0.130 0.131 … 

Amplitude 
of order 1 – 

Y axis 
[m/s2] 

0.054 0.052 0.054 …. 

Amplitude 
of order 2 – 

X axis 
[m/s2] 

0.024 0.019 0.018 …. 

Amplitude 
of order 2 – 

Y axis 
[m/s2] 

0.064 0.059 0.057 …. 

 
 

4. REVIEW OF LEARNING VECTORS 
CORRECTNESS  
 

The k-means clustering analysis was performed 
in order to verify the correctness of learning vectors 
built by the author. The analysis was performed in 
the MatLab environment with addition of Statistics 
and Machine Learning Toolbox™. The cluster 
analysis finally leads to grouping data into clusters 
so that the elements in the same group are as similar 
to each other as possible, and the elements from 
various groups are as dissimilar as possible. The 
measure of similarity depends on the area of 
application [18]. Consequently, the cluster analysis 
helps find structure in the data set without 
interpretation (without justification of their 
occurrence). The difference between the cluster 
analysis and statistical tests (methods)  lies in the 
fact that the former is used without any “a priori 
hypotheses, during the exploratory phase of 
research.” 

A silhouette plot was made using the group 
indices in order to check the quality of separation 
between clusters. The plot (Figure 9) presents the 
proximity of each point of one cluster to the 
neighbouring clusters. The measure of proximity 
(silhouette value) is in the <-1,1> range, where 1 
represents points very distant from other clusters, 0 
represents points not included distinctly in any 
cluster, and -1 indicates points which are probably 
assigned to a wrong cluster. 

The elements of cluster 1 have values from 0.3 to 
0.55, elements of cluster 2 – from 0.2 to 0.4, 
elements of cluster 3 – from 0.7 to 0.85. This means 
that the elements in clusters separate in the learning 
vectors space. Large silhouette values were obtained 
in cluster 3. The group of these elements has the best 
separation. In remaining two clusters the separation 
is not so distinct, but still satisfactory. In addition, 
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no element was grouped wrongly, hence we can say 
that the choice of learning vectors is correct. 
 

 
 

Fig. 9. Silhouette plot obtained by cluster analysis 
of learning vectors space with k-mean clustering 

(1, 2, 3 – indices  of successive clusters) 
 

 
5. CHOOSING THE ARTIFICIAL NEURAL 

NETWORK ARCHITECTURE  
 
5.1. Two-layer Network 

We tested the multilayer unidirectional artificial 
neural network. The initial analysis was performed 
on the two-layer network (hidden layer and output 
layer). The output layer comprises two neurons. The 
desirable outputs from the network, corresponding to 
individual gearbox operation conditions, are 
presented in Table 3. 

 
Tab. 3. Desirable outputs from the multilayer 

unidirectional network and corresponding gearbox 
operation conditions 

Neuron in output layer 

neuron 1 neuron 2 

Gearbox condition  

0 0 good 
1 0 unbalance 
0 1 misalignment 

1 1 unbalance and 
misalignment 

 
The initial number of neurons in the hidden layer 

in the first tested network was specified as the 
number of inputs and outputs divided by 2. In this 
case, there were 4 neurons. 

Sigmoid bipolar neuron activation functions 
were used in both layers. Training of the networks 
was performed using the Levenberg–Marquardt 
algorithm which is usually the fastest method for 
training the unidirectional networks. The parameter 
verifying the network performance was a mean-
square error between the network outputs and 

defined target vector. The learning with the train 
function takes place in the batch mode, meaning that 
all learning vectors are sent to the network inputs 
before the synaptic weights are changed. This 
learning mode is significantly faster and generates 
smaller errors than the mode in which the weighs are 
updated after each vector is sent to the network [19]. 
The input data are normalized so that they are 
included in the <-1,1> range. In addition, a popular 
practice during the training of neural networks is to 
divide the data into three subsets. The first of them, 
the training subset, is used to calculate the gradient 
and change of weights and biases. The second, the 
validation subset, is used to monitor the error during 
the training. Usually, the validation error decreases 
in the beginning of the learning process just as the 
training subset error. However, a possible increase 
of the validation error may indicate the network 
overfitting. The values of weights and biases in the 
network are recorded for the least validation subset 
error. And finally, the third test subset is not used 
during the learning process; it can be used for 
comparing various models [19]. 

The division into subsets in our network was 
according to the default values: 70% - training 
subset, 15% - validation subset, 15% - test subset. 

The first architecture of the two-layer 
unidirectional network is shown in Figure 10. 

 

 
 

Fig. 10. The first unidirectional two-layer network 
created in MatLab. Where: 5 – number of input 

vector elements, 4 – number of neurons in hidden 
layer, 2 – number of output neurons (network 
outputs), w – weights vector, b – biases vector 

 
As on the output we obtain the values from the 

<0,1> interval, three intervals were created 
corresponding to the quality of classification of 
gearbox operation condition by the network. The 
classification correctness criterion was absolute 
value of the difference between the target vale and 
the value obtained on the output of both neurons d1 
and d2 : 

d1, d2∈<0 , 0.25> - accurate classification; 
d1, d2∈(0.25 , 0.5) - uncertain classification; 
d1, d2∈<0.5 , 1> - wrong classification. 

The network was trained ten times using the data 
from the first series of measurements. The 
correctness of network performance was verified by 
applying to the network inputs the vectors from the 
second series of measurements and also the vectors 
with double damage.  

Every ten learning and validation processes the 
network architecture was changed by adding neurons 
in the hidden layer and the process was repeated so 
that each architecture was trained ten times. As we 
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can see in Figure 11, with increased number of 
neurons in the hidden layer, the number of epochs 
needed to train the network decreased.  

 

 
 
Fig. 11. Number of epochs to train the multi-layer network 

vs. number of neurons in the layer 
 

Along with the increased number of neurons, the 
mean-square error was reduced too (Figure 12) and 
the classification correctness was increased. 

 

 
 

Fig. 12. Mean-square error vs. number of neurons 
in the layer 

 
The unidirectional network correctly classified 

99.86% of validation vectors with as few as four 
neurons in the hidden layer. The biggest problem for 
the network was generalization of knowledge and 
correct classification of two damages at the same 
time (misalignment and unbalance). 13.26% of 
correct classifications were obtained with 4 neurons 
in the hidden layer, and the result was improved to 
57.53% with 22 neurons.  

Networks containing from 4 to 300 neurons in 
the hidden layer were tested in order to determine 
the number of neurons needed for maximum 
classification for this type of network. Trailing was 
repeated ten times for each tested number of 
neurons, and then the average value was calculated. 
The performance obtained for all two-layer networks 
depending on the number of neurons in the hidden 
layer is presented in Figure 13.  

As we can see in Figure 13, the trend value of 
correct classification of double damage reached its 
maximum at 64% with 83 neurons. The decrease of 
correct classifications may have been caused by 
network overfitting, the phenomenon in which the 
neural network with too many neurons in relation to 

the learning data adapts itself to accidental errors on 
the learning sequence, thus losing its ability to 
generalize and apply to other similar data.  

 

 
 

Fig. 13. Correct classifications vs. number of 
neurons in the hidden network layer (sigmoid 

bipolar activation functions) 
 

The ratio of uncertain classification for this 
architecture was 6.38%, and of erroneous 
classifications - 14.71%. 100% of accurate 
classifications were obtained for validation vectors 
for single operation conditions.  

 
5.2. Three-layer network – case I 

Further tests were performed on a three-layer 
network with two hidden layers and one output 
layer. The second hidden layer had half of the 
neurons from the first layer, rounded down.  We 
tested networks from 4 neurons in the first hidden 
layer, 2 neurons in the second hidden layer, and 2 
neurons in the output layer, up to 100, 50 and 2 
neurons, respectively. We used network models with 
different neuron activation functions.  

Case I included only sigmoid bipolar functions – 
Figure 14. 

 

 
 

Fig. 14. Architecture of unidirectional three-layer 
network (all neuron activation functions are 

sigmoid bipolar). Where: 5 – number of network 
inputs, 100 – number of neurons in hidden layer 1, 

50 – number of neurons in hidden layer 2, 2 – 
number of output neurons (network outputs), w – 

weights vector, b – biases vector 
 

This network architecture was also tested for 
performance depending on the number of neurons in 
the hidden layers. The best result (57.39%) was 
obtained for 70 neurons in the first hidden layer and 
35 neurons in the second hidden layer, with 7.67% 
of uncertain classifications and 34.94% of erroneous 
classifications. 100% of accurate classifications were 
obtained for validation vectors for single operation 
conditions. 
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Generally, the results for the three-layer network 
were worse than for the two-layer network. In 
addition, the learning time was significantly longer. 

 
5.3. Three-layer network – case II 

In successive layers we used the following 
activation functions: linear, sigmoid bipolar, sigmoid 
bipolar – Figure 15. 

The best average results of double damage 
classification correctness for this network were as 
follows: 77.17% of accurate classifications, 6.52% 
of uncertain classifications, and 16.31% of 
erroneous classifications. All validation vectors with 
a single damage were classified correctly.  
 

 
 

Fig. 15. Architecture of unidirectional three-layer 
network (neuron activation functions in successive 
layers: linear, sigmoid bipolar, sigmoid bipolar). 

Where: 5 – number of network inputs, 80 – 
number of neurons in hidden layer 1, 40 – number 
of neurons in hidden layer 2, 2 – number of output 
neurons (network outputs), w – weights vector, b – 

biases vector 
 
6. SUMMARY 

The analysis and processing of non-stationary 
signals measured on a real object at the planetary 
gearbox test stand in the Department of Mechanics 
and Vibroacoustics of AGH University of Science 
and Technology was performed using the order 
analysis based on the signal resampling. A 
multithreaded program was developed in the 
LabVIEW environment to conduct the order 
analysis, extract the diagnostic features and create 
the learning vectors.  

The correct choice of the learning vectors space 
was verified using the k-means clustering in the 
MatLab environment. A good separation was 
obtained for three clusters. 

A functional analysis was performed on the 
artificial neural network with two-layer and three-
layer unidirectional architecture, trained with the 
Levenberg–Marquardt algorithm.  

A program was written in the MatLab 
environment in order to select the correct number of 
neurons and network layers. The program trained a 
given architecture ten times and recorded the results 
in a matrix. If the target operational correctness was 
not achieved, the network architecture was modified 
by adding more neurons and the learning process 
was repeated. The program proved helpful in finding 
the structure which fits the task the best. We 
obtained 100% of correct classifications of vectors 
from the second (validation) series of measurements. 
On the other hand, the tested multilayer networks 
showed different  capability of generalizing the 

knowledge (testing with double-damage vectors) 
depending on the number of layers and the activation 
functions. The best results were obtained for the 
two-layer network with sigmoid bipolar neuron 
activation functions: 78.91% of accurate 
classifications, 6.38% of uncertain classifications, 
and 14.71% of erroneous classifications with 83 
neurons in the hidden network hidden layer. In 
addition, the learning process in those networks was 
the fastest. 

The performance was worse for three-layer 
networks. With one linear activation function and 
two sigmoid bipolar functions in the successive 
layers, the results were: 77.17% of accurate 
classifications, 6.52% of uncertain classifications, 
and 16.31% of erroneous classifications. The least 
classification correctness was obtained in case of 
three-layer networks with sigmoid bipolar activation 
functions in all layers: 57.39% of accurate 
classifications, 7.67% of uncertain classifications, 
and 34.94% of erroneous classifications. On top of 
that, the learning time of three-layer networks was 
much longer than of two-layer ones. 

The obtained results prove the effectiveness of 
proposed methods in detecting and diagnosing the 
faulty operation conditions of a planetary gearbox 
operating at variable load. The proposed methods 
can be a valuable part of the diagnostic and 
monitoring systems, contributing to the increased 
quality of work, extended life and better safety of 
machinery and equipment.  
 
ACKNOWLEDGMENT 
 
The study has been developed under the statutory 
investigation of the Department of Mechanics and 
Vibroacoustics of the AGH University of Science 
and Technology. 
 
REFERENCES 
 
[1] Yesilyurt I. The application of the conditional 

moments analysis to gearbox fault detection – a 
comparative study using the spectrogram and 
scalogram. NDT&E International 37 (2004) 309–
320. 

[2] Yang Z, Hoi W I, Zhong J. Gearbox Fault Diagnosis 
based on Artificial Neural Network and Genetic. 
Algorithms Proceedings of 2011 International 
Conference on System Science and Engineering, 
Macau, China -  2011 

[3] Tomaszewski J. Diagnostyka stanu technicznego 
przekładni zębatych ogólnego przeznaczenia, 
[Diagnostics of Technical Condition of General Use 
Gear Trains] Maszyny Górnicze 4/2007 

[4] Bartelmus W. Vibration diagnostic method for 
planetary gearboxes under varying   external load 
with regard to cyclostationary analysis. Oficyna 
Wydawnicza Politechniki Wrocławskiej, Wrocław 
2009 

[5] Zimroz R. Modelowanie sygnałów drganiowych 
generowanych przez przekładnie planetarne w 
warunkach zmiennego obciążenia [Modelling of 



DIAGNOSTYKA, Vol. 17, No. 2 (2016)  
POPIOŁEK, PAWLIK: Diagnosing The Technical Condition Of Planetary Gearbox… 

 

64

Vibration Signals Generated by Planetary Gearboxes 
under Variable Load] Diagnostyka’3 (39)/2006 

[6] Cioch W, Knapik O, Leśkow J. Finding a frequency 
signature for a cyclostationary signal with 
applications to wheel bearing diagnostics. 
Mechanical Systems and Signal Processing; 2013 
vol. 38 nr 1 spec. iss.: Condition monitoring of 
machines in non–stationary operations, s. 55–64. 

[7] Rafiee J, Arvani F, Harifi A, Sadeghi M H. 
Intelligent condition monitoring of a gearbox using 
artificial neural network. Mechanical Systems and 
Signal Processing, vol. 21, no. 4, pp. 1746–1754, 
2007.  

[8] Cocconcelli M, Rubini R, Zimroz R,  Bartlemus W. 
Diagnostics of ball bearings in varying-speed motors 
by means of artificial neural network. Proceedings 
of the 8th International Conference on Condition 
Monitoring and Machinery Failure Prevention 
Technologies, pp. 760–771, Cardiff, UK, June 2011. 

[9] Samanta B, Al-Balushi K R. Artificial neural 
network based fault diagnostics of rolling element 
bearings using time domain features. Mechanical 
Systems and Signal   Processing, vol. 17, no. 2, pp. 
317–328, 2003. 

[10] Sarma D V S S, Kalyani G  N S.      ANN approach 
for condition monitoring of power transformers 
using DGA. Proceedings of the IEEE Region 10 
Conference (TENCON ’04), vol. 3, pp. 444–447, 
IEEE, November 2004. 

[11] Azadeh A, Saberi M, Kazem A, Ebrahimipour V, 
Nourmohammadzadeh A, Saberi Z. A flexible 
algorithm for fault diagnosis in a centrifugal pump 
with corrupted data and noise based on ANN and 
support vector machine with hyper parameters 
optimization. Applied Soft Computing Journal, vol. 
13, no. 3, pp. 1478–1485, 2013.  

[12] Straczkiewicz M, Barszcz T.  Application of 
Artificial Neural Network for Damage Detection in 
Planetary Gearbox of Wind Turbine. Article in 
Shock and Vibration 2016(4):1-12, 2016 

[13] Bartelmus W, Zimroz R, A new feature  for 
monitoring the condition of gearboxes in  non-
stationary operating conditions.  Mechanical 
Systems and Signal Processing,  vol. 23, no. 5, pp. 
1528–1534, 2009. 

[14] Lei Y, Lin J, Zuo M J, He Z. Condition monitoring 
and fault diagnosis of planetary gearboxes: a review, 
Measurement, vol. 48, no. 1, pp. 292–305, 2014. 

[15] National Instrument, LabVIEW Order Analysis 
Toolkit User Manual, 2005 

[16] Cempel C. Diagnostyka Wibroakustyczna Maszyn 
[Vibroacoustic Diagnostics of Machines], Warszawa 
1989 PWN. 

[17] Lees A W. Misalignment in rigidly coupled rotors, 
Journal of Sound and Vibration 305 (2007) 261 – 
271 

[18] Tan P, Steinbach M, Kumar V. Introduction to Data 
Mining. chapter 8,  Addison-Wesley Longman 
Publishing Co., Inc. Boston, MA, USA 2005 

[19] Beale M H, Hagan M T, Demuth H B. Neural 
Network Toolbox™. User's Guide R2015a, 2015 

 
 
 
 
 
 

Received 2016-04-04 
Accepted 2016-05-25 
Available online 2016-06-04 

 
Krzysztof POPIOŁEK, 
received Master of Science 
degree at the Faculty of 
Mechanical Engineering and 
Robotics, AGH University of 
Science and Technology, 
Cracow, Poland, in 2015. He 
currently works at GE Aviation, 
developing his passions: 
Machine Learning and Data 
Science. 

 
Paweł PAWLIK, received PhD 
degree in Faculty of Mechanical 
Engineering and Robotics from 
 AGH University of Science and 
Technology, Cracow, Poland, in 
2013. In the scientific work he 
builds vibro-diagnostic 
monitoring systems and develops 
methods of signals processing. He 
is also involved in the 
development of non-classical 

methods of uncertainty assessment.  
 


